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novel N-(5-Nitrothiazol-2-yl)-carboxamido derivatives as potent inhibitors of
SARS-CoV-2 main protease

Mohamed Elagawanya , Ayman Abo Elmaatyb, Ahmed Mostafac,d, Noura M. Abo Shamac, Eman Y. Santalie,
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Centre, Cairo, Egypt; dInstitute of Medical Microbiology, German Center for Infection Research (DZIF), Justus-Liebig University Giessen, Giessen,
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ABSTRACT
The global outbreak of the COVID-19 pandemic provokes scientists to make a prompt development of
new effective therapeutic interventions for the battle against SARS-CoV-2. A new series of N-(5-nitrothia-
zol-2-yl)-carboxamido derivatives were designed and synthesised based on the structural optimisation
principle of the SARS-CoV Mpro co-crystallized WR1 inhibitor. Notably, compound 3b achieved the most
promising anti-SARS-CoV-2 activity with an IC50 value of 174.7 mg/mL. On the other hand, compounds 3a,
3b, and 3c showed very promising SARS-CoV-2 Mpro inhibitory effects with IC50 values of 4.67, 5.12, and
11.90 mg/mL, respectively. Compound 3b docking score was very promising (�6.94 kcal/mol) and its bind-
ing mode was nearly similar to that of WR1. Besides, the molecular dynamics (MD) simulations of com-
pound 3b showed its great stability inside the binding pocket until around 40ns. Finally, a very promising
SAR was concluded to help to design more powerful SARS-CoV-2 Mpro inhibitors shortly.

GRAPHICAL ABSTRACT

HIGHLIGHTS

� A new series of N-(5-nitrothiazol-2-yl)-carboxamido derivatives were designed and synthesised based
on the structural optimisation principle.

� In vitro antiviral activities against SARS-CoV-2 using SARS-CoV-2 cell-based inhibitory assay.
� The anticipated inhibitory effects of the synthesised compounds (3a–g) towards the SARS-CoV-2 Mpro
enzyme were emphasised by using the SARS-CoV-2 Mpro assay.

� Molecular docking studies, molecular dynamics simulations for 100ns, and MM-GBSA calculations were
carried out for the newly synthesised compounds (3a–g) compared to the co-crystallized inhibitor (WR1).
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� ADMET and toxicity in silico studies were applied for the designed derivatives.
� Finally, our interesting work rationale helped to conclude a very promising structure-activity relation-
ship (SAR) finding.

1. Introduction

The COVID-19 global outbreak is attributed to SARS-CoV-21.
Owing to its overwhelming expansion and spreading, the virus
caused an unprecedented global health crisis. Subsequently, the
World Health Organisation (WHO) officially claimed that COVID-19
is pandemic in March 2020. SARS-CoV-2 has reached over 170
countries and has adversely impacted over 235 million individuals
with a death toll nearing 5.2 million as of 22 November 20211,2.
Besides, the incubation period of SARS-CoV-2 is nearly 2–14 days
and can be extended up to 24 days. The virus’s long incubation
period, and its possible asymptomatic nature, could be in charge
of infections spreading. The fast rise in COVID-19 cases increases
the need for effective interventions3–6.

Furthermore, the virus belongs to the Coronaviridae family and
generally coronaviruses can be classified to four genera, gamma-
coronavirus (c-CoV), delta-coronavirus (d-CoV), alpha-coronavirus
(a-CoV), and beta-coronavirus (b-CoV). Both a- and b-species
mainly hit mammals, while c- and d- species hit birds7. Notably, it
was confirmed that SARS-CoV-2 shares almost 80% of the genome
with SARS-CoV8. Infection by SARS-CoV-2 is transmitted mainly
through human-to-human contact from respiratory droplets. The
viral infection varies in severity from asymptomatic to threatening
fatal disease. Consequently, the most common symptoms include
headache, fever, non-productive cough, fatigue, and dyspnoea.
Patients with severe disease may develop viral pneumonia, hyp-
oxia, and acute respiratory distress. So, intubation and mechanical
ventilation are required1. Additionally, neurological symptoms
including skeletal muscle injury, acute cerebrovascular diseases,

consciousness impairment, and loss of smell and/or taste could be
manifested by SARS-CoV-2 infection9,10.

Additionally, coronaviruses belong to RNA viruses [single-
stranded positive-sense (þ)] that are distinctly prevalent in wildlife
and humans. Notably, coronaviruses have the most enormous
known RNA genomes. Hence, the virus’s two encoded overlapping
open-reading frames are translated into the two polyproteins
named; pp1a and pp1ab. So, these polyproteins are processed fur-
ther to give rise to four structural proteins and sixteen non-struc-
tural proteins (nsps)11. Subsequently, the virus replicase
polyprotein is processed by two distinct cysteine proteases; the
papain-like protease (PLpro) and the main protease (Mpro)12,13.
The proteolytic refining of the sixteen nsps by PLpro and 3CLpro
is crucial for virus maturation and replication, and therefore PLpro
and 3CLpro emerged as key druggable targets14–18.

For the sake of achieving rapid therapeutic interventions, a
handful set of repurposed drugs19,20 like chloroquine, hydroxy-
chloroquine, and remdesivir, has been used frequently for COVID-
19 treatment3,4. Although remdesivir, which gained urgent
approval, hydroxychloroquine and nafamostat are viewed as out-
standing therapeutic candidates, their low clinical effects and
adverse side effects warrant the search for more effective and
safer treatments21. Several SARS-CoV-2 druggable targets were
elucidated such as Mpro, spike (S) protein, papain-like protease
(PLpro), and RNA-dependent RNA polymerase. The viral Mpro is
regarded as an outstanding target for druggability3,22.

The Mpro enzyme is one of the best coronavirus drug targets
due to the resemblance in their active site and mechanisms with
b-Coronaviruses from previous epidemics; SARS-CoV and MERS-

Figure 1. Schematic diagram showing SARS-CoV-2 host, its transmission, and the virus Mpro as a promising druggable target of interest in an infected cell.
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CoV (Middle East respiratory syndrome coronavirus)23. Mpro is a
preserved drug target without a human homolog, hence lowering
the possibility of accidentally targeting host proteins. Therefore,
Mpro is perceived as a potential target for broad-spectrum drug
development23,24. It is worth mentioning that findings propose
that SARS-CoV-2 possesses the power to utilise human angioten-
sin-converting enzyme 2 (ACE2) receptors in the seek of cell
entrance as displayed in Figure 17,16.

Despite all efforts and attempts to find a treatment for SARS-
CoV-2 infection, rising issues of COVID-19 mortality and morbidity
are still encountered globally. Although vaccines have been devel-
oped, efficient and safe drugs are urgently needed5,10,25.

Lately, a new synthetic nucleoside derivative prodrug, named
molnupiravir, was approved in the U.K for COVID-19 treatment.
Molnupiravir acts by copying errors during RNA virus replication26. It
is an active orally RdRp inhibitor with reasonable pharmacokinetic
features. It has gained significant attention for its capability to inhibit
the spreading of SARS-CoV-2, with a remarkable reduction in the
viral load and quick recovery time27. A single-dose administration of
molnupiravir produces a mean Cmax of 13.2 ng/mL and tmax between
0.25 and 0.75h with a biological t1/2 of 7h. It was suggested that
molnupiravir has no accumulative toxicity and that was assured by
its area under the plasma concentration versus time following mul-
tiple doses, increases with no accumulation in a dose-proportional
manner27. Moreover, molnupiravir could exhibit rapid onset, a wide
therapeutic window, and fewer side effects with good tolerability
and safety profile. Hence, it can be considered a very promising
therapeutic intervention against SARS-CoV-227. Additionally, the oral
antiviral drug, named PF-07321332, was developed by Pfizer For
COVID-19 treatment as well. PF-07321332 acts as an active Mpro

inhibitor of the virus26. Protease inhibitors act by interrupting the
protease enzyme cutting, thus, the polypeptide processing to smaller
protein is blocked. PF-07321332 is co-administered with ritonavir in
low doses as a booster to enhance the PF-07321332 bloodstream
levels28. The combination of ritonavir/PF-07321332 was marketed
as paxlovid26.

In recent months, many researchers disclosed the discovery of
potent inhibitors for SARS-CoV-2 using molecular docking and
dynamics in silico approaches19,29–36. Moreover, the literature
revealed that some novel chemically synthesised compounds were
designed and evaluated biologically as outstanding inhibitors of
SARS-CoV-2 Mpro37–40. Obviously, the N-heterocyclic scaffolds
commonly exhibit a pivotal function and exert an advanced bio-
logical activity against SARS-CoV-2. Hence, a promising therapeutic
intervention for COVID-19 treatment can be acquired25. Therefore,
in the current work, we aimed to synthesise a series of N-hetero-
cyclic scaffold derivatives that have the same pharmacophoric fea-
tures of SARS-CoV Mpro native inhibitor (N3) as depicted in
Scheme 1. Thus, the virus Mpro was targeted revealing the poten-
tial of the synthesised compounds as promising candidates for
COVID-19 treatment using both in vitro and in-silico approaches
for their assessment.

1.1. The rationale for work design

WR1 is the three-letter code of the native inhibitor of SARS-CoV
Mpro downloaded from PDB with ID 2OP941. Observing the native
inhibitor (WR1) binding mode at SARS-CoV Mpro, we can conclude
that it could be stabilised within its binding pocket via the follow-
ing essential pharmacophoric features (Figure 2);

Scheme 1. Chemical synthesis of the designed target compounds (3a–g) attempted to combat COVID-19.
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a. H-bond donor (NH) to compose an H-bond with Cys145
amino acid.

b. H-bond acceptor (CO) to compose an H-bond with Glu166
amino acid.

c. Aromatic moiety to occupy the hydrophobic groove com-
posed of the amino acids; Met49 and Met165.

d. Additional moiety (3-hydroxy propanone) to interact with
His163, Cys145, or Phe140 amino acids.

On the other hand, it is worth mentioning that the inhibitor-bind-
ing site is located at Cys–His dyad which composes the catalytic cleft
located between the SARS-CoV-2 Mpro domains I and II. Herein, the
authors analysed the pharmacophoric features of SARS-CoV Mpro co-
crystallized inhibitor (WR1) to synthesise a new series of compounds
(3a–g) using the ligand-based design approach42 and based on the
structural optimisation principle. In addition, taking into account the
close structural similarity within the two strains of SARS-CoV (1 and
2)4,10, we dedicated our efforts to synthesising a novel series of N-(5-
nitrothiazol-2-yl)-carboxamido derivatives as significant inhibitors of
SARS-CoV-2 Mpro (Figure 3), where;

a. We kept the H-bond donor moiety (amidic group) such as
the co-crystallized inhibitor (WR1).

b. We kept the H-bond acceptor moiety (benzyl carbamate)
such as the co-crystallized inhibitor (WR1) except for com-
pound 3a.

c. We modified the aromatic ring that fits within the hydropho-
bic groove composed of the amino acids; Met49 and Met165

to other different moieties with different sizes (methyl, iso-
propyl, benzyl, pyrrole, or indole substituents) in compounds
3c, 3d, 3e, 3f, and 3g, respectively. Also, we removed this
moiety in both compounds 3a and 3b.

d. We replaced the previously mentioned additional moiety (3-
hydroxy propanone) that interacts with His163, Cys145, or
Phe140 with 5-nitrothiazole moiety which was extracted from
nitazoxanide (Figure 4) which was later approved to possess
potent antiviral activities against hepatitis B and C, influenza
A, and coronaviruses. Recently, nitazoxanide was evaluated
against SARS-CoV-2 through in vitro assessment which con-
firmed its promising activity (EC50 of 2.12lM)43.

Based on the aforementioned rationale, we were able to assess
the impact of the discussed modifications on the potential of the
synthesised candidates to get a lead compound and obtain a rea-
sonable structure-activity relationship (SAR) which could aid medi-
cinal chemists to design more promising anti-SARS-CoV-2 drug
candidates soon as well.

2. Results and discussion

2.1. Chemistry

Compounds 3a–g were synthesised by treating N-acyl benzotria-
zoles (1a–g) with 5-nitrothiazol-2-amine (2) at room temperature
in the presence of triethylamine in acetonitrile for 1 h following
the reported methodologies44,45.

Figure 2. The rationale work design shows the identification of the essential pharmacophores acquired by the SARS-CoV Mpro co-crystallized inhibitor.
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2.2. In vitro studies

2.2.1. SARS-CoV-2 inhibitory assay
To investigate the anti-SARS-CoV-2 activity in Vero E6 cells, the
cytotoxicity of the tested compounds was assessed in Vero E6
cells via MTT test and the results unravelled that the cytotoxic
concentration 50 (CC50) values were 1466 mg/mL (3a), 1853 mg/mL

(3b), 2118 mg/mL (3c), 1204 mg/mL (3d), 2040 mg/mL (3e),
2802 mg/mL (3f), and 1626 mg/mL (3g) (Figure 5). Furthermore,
the antiviral activities were estimated using the dose-response
curves. The result showed that the concentrations that induce
inhibition to 50% of the investigated cells (IC50) by the tested
compounds were 1377 mg/mL (3a), 174.7 mg/mL (3b), 698 mg/mL
(3c), 1285 mg/mL (3e), and 1252 mg/mL (3f) (Figure 5). For all

Figure 3. Schematic representation describing the achievement of the previously identified pharmacophoric features of SARS-CoV Mpro inhibitor in the newly designed
drug candidates (3a–g).

Figure 4. The replacement of the 3-hydroxy propanone moiety of the co-crystallized SARS-CoV Mpro inhibitor that interacts with His163, Cys145, or Phe140 with 5-
nitrothiazole moiety which was extracted from the potent anti-SARS-CoV-2, nitazoxanide.
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tested compounds, the IC50 values were estimated by plotting log
inhibitory concentrations (X-axis) against normalised response (Y-
axis), (variable slope) utilising GraphPad Prism software (version
5.01) nonlinear regression analysis. However, compounds (3d) and
(3g) displayed IC50 values higher than their corresponding CC50
values neglecting their applicability as anti-SARS-CoV-2.

Consequently, compound 3b showed the best selectivity index
(SI¼CC50/IC50) with a SI ¼ 10, followed by 3c with a SI value of 3.

2.2.2. SARS-CoV-2 Mpro inhibitory assay (cell-based)
The anticipated inhibitory effects of the synthesised derivatives
(3a-g) towards the SARS-CoV-2 Mpro enzyme were emphasised by
using the SARS-CoV-2 Mpro assay. Out of the synthesised com-
pounds, compounds 3a, 3b, and 3c unravelled so outstanding
SARS-CoV-2 Mpro inhibitory effects with IC50 values of 4.67, 5.12,
and 11.90 mg/mL, respectively, as displayed in Figure 6 as well as
the Supplementary Data (Supplementary Table 1). It is worth men-
tioning that among these promising compounds, compounds 3a
and 3b fulfilled the best inhibitory activity against SARS-CoV-2
Mpro with very promising IC50 values.

2.3. In silico studies

2.3.1. Molecular docking studies
At the beginning of the docking process, to assure the accuracy
of the docking protocol, the MOE program was validated. So, the
program validation was initiated by the native ligand (WR1) re-
docking against the SARS-CoV Mpro target receptor46–48. A valid
docking protocol was ensured by getting a low RMSD value

Figure 5. Cytotoxicity concentration 50 (CC50) of the newly designed and synthesised SARS-CoV Mpro analogs (3a–g) on Vero E6 cells. Besides, inhibitory concentra-
tion (IC50) to estimate the antiviral activity against SARS-CoV-2 [hCoV-19/Egypt/NRC-03/2020 (Accession Number on GSAID: EPI_ISL_430820)] using Vero E6 cells.
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Figure 6. Mpro inhibitory concentration 50 (IC50) against SARS-CoV-2 for the syn-
thesised compounds (3a–g), where compounds 3a, 3b, and 3c unravelled so out-
standing SARS-CoV-2 Mpro inhibitory effects with IC50 4.67, 5.12, and 11.90 mM,
respectively. �p ˂ 0.05 compared to 3a. #p ˂ 0.05 compared to 3b. &p ˂ 0.05
compared to 3c. $p ˂ 0.05 compared to 3d. @P ˂ 0.05 compared to 3e. !p ˂ 0.05
compared to 3g.
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(1.33 Å) between the re-docked conformer and the co-crystallized
conformer of WR1 as shown in Figure 7 49,50.

WR1, as a native co-crystallized ligand, formed hydrogen bonds
with Phe140 and His163 through the hydroxyl group of the oxo-
pentan-2-yl moiety of WR1 at distances 2.79 and 2.91 Å, respect-
ively. However, the docked WR1 formed hydrogen bonds with
Ser144, Cys145, and Gly143 through the carbonyl group of the
oxopentan-2-yl moiety of WR1 at distances 2.91, 2.94, and 2.87 Å,
respectively. Moreover, the carbamate moiety of WR1 interacted
with Glu166 via a hydrogen bond at a distance of 2.92 Å, but the
amide moiety of WR1 formed a hydrogen bond with Asn142 and
Cys145 at distances 2.95 and 3.49 Å, respectively (Figure 8).

So, by analysing the docking depicted in Table 1 and Figure 9
of our synthesised compounds (3a–g) against Mpro pockets of
SARS-CoV, taking into consideration the pharmacophoric features
discussed before, we can conclude the following:

The redocked co-crystallized ligand, WR1, unveiled binding
energy of �6.52 kcal/mol. It forms only one hydrogen bond with
Glu166 through its carbamate moiety at a distance of 2.98 Å.
However, taking them as representative examples with high antici-
pated intrinsic activity, compound 3a has a binding interaction
score of �5.43 kcal/mol towards Mpro pockets of SARS-CoV. The

amide nitrogen of compound 3a forms a hydrogen bond with
Phe140 at a distance of 3.18 Å, whereas the nitro group forms a
hydrogen bond with Cys145 at a distance of 3.05 Å. Moreover,
the oxygen of the amide group of compound 3a interacts with
Glu166 through a hydrogen bond at a distance of 3.12 Å.
Moreover, compound 3b has a binding interaction score of
�6.94 kcal/mol towards Mpro pockets of SARS-CoV. The phenyl
ring of compound 3b forms a pi-H bond with Glu 166 at a dis-
tance of 3.63 Å. Whereas, the oxygen of the amide group of com-
pound 3b binds with Cys145 via hydrogen bond at a distance of
3.03 Å. Furthermore, compound 3c has a binding interaction score
of �6.07 kcal/mol towards Mpro pockets of SARS-CoV-2. The nitro
group and the oxygen of amide moiety at the thiazole ring of
compound 3c were capable of composing H-bond with the amino
acids; Cys145 and His163 at 3.39 and 3.14 Å, respectively, the two
main amino acids composing the SARS-CoV-2 Mpro catalytic
dyad51 indicating anticipated significant intrinsic activity against
SARS-CoV-2. Besides, the carbamate nitrogen of compound 3c
forms H-bond with Phe144 with a distance of 3 Å, whereas the
phenyl ring of Compound 3c forms a pi-H bond with Glu166 with
a distance of 3.98 Å. Moreover, the 2D interactions of the newly
designed hits (3a–g) were described in the Supplementary Data
(Supplementary Table 2).

2.3.2. Molecular dynamics (MD) simulations
To record the behaviour of the examined candidates inside the
binding pocket of SARS-CoV during a time of 100 ns and using
the same criteria for the physiological environment, MD simula-
tions were performed accordingly. All of the seven docked com-
plexes along with the co-crystallized WR1 inhibitor—as a
standard—were subjected to MD simulations for 100 ns.

2.3.2.1. RMSD and RMSF analysis. To compare the degree of devi-
ation for the complexed protein structure related to its initial
native form quantitatively, the RMSD was studied. This helps to
investigate the system’s overall stability through the simula-
tion time.

The RMSD of the eight complexes showed good stability
behaviours all over the simulation time with RMSD values in the
range of (0.7–1.3) Å (Figure 10).

Figure 7. 3D diagram unveiling the native ligand WR1 (Green), and redocked WR1 (Violet) superimposition at SARS-CoV Mpro with PDB: 2OP9 for MOE pro-
gram validation.

Figure 8. Native co-crystallized WR1 inside SARS-CoV Mpro active site with PDB:
2OP9. The red dashed lines stand for hydrogen bonds.
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The Root Mean Square Fluctuation (RMSF) is useful to show
the local changes that occur in the protein structure. In addition,
it clarifies the degree of the protein residues’ flexibility through
the simulation. The RMSF of the eight complexes was reported in
the Supplementary Data (Supplementary Figure 1). The residue
from 0 to 301 represents chain A, and residues from 302 to 602
represent chain B of the dimer. The most fluctuation was within
the 0–3 Å range, the only exception is for terminal Ala0, Ser1, and
Ser301 from both chains were found to fluctuate at
around 3.10–3.30 Å.

Additionally, snapshots at 0, 50, and 100 ns for 3a-2OP9, 3b-
2OP9, 3c-2OP9, and WR1-2OP9 complexes were represented in
the Supplementary Data (Supplementary Figure 2).

The RMSD of ligands within the protein’s active site was
described against the time of simulation (Figure 11). Most com-
pounds showed stability inside the protein’s active site during the
simulation except for compounds 3b and 3g.

Compound 3a moved around 3–4 Å from its original site and
moved deeper inside the active site; the fluctuation at �55–57
and 92–95 ns is due to losing interaction with residue Glu166.
Moreover, compound 3b was still stable inside the active pocket
till around 40 ns before it lost its interactions and entirely moved
out of the active site. This may recommend a great conform-
ational change within the examined protein due to the interaction
with compound 3b which may explain its superior antiviral activ-
ity52. Compounds 3c, 3d, 3e, 3f, and WR1 behave nearly in the
same way as compound 3a, and the compounds moved deeper
inside the active site than their initial position by around 8, 3, 4,
6, and 4 Å, respectively. Compound 3g was not stable; it started

to fluctuate from the beginning of the simulation and moved by
4 Å from its original site, and at around 28 ns and moved further
by 4 Å from its new position up to about 75 ns, where it lost its
interaction and pushed out the active site.

2.3.2.2. Histogram and heat map analyses. Histograms for the
SARS-CoV protein-ligand contacts of the selected four complexes
during the simulation time (100 ns) are described in Figure 12.

Regarding 3a-complex, Glu166 contributed �90%, besides
Gly143, Ser144, and Cys145 contributed (�10–45%) of the interac-
tions as H-bonding; however, Leu167 and Pro168 formed the
hydrophobic interactions mainly. Also, Asn142 and Gln189 were
the main members contributing to the H2O-bridges H-bonds, and
also no ionic bonds were recorded. Obviously, Glu166 was the
most participating amino acid in the interactions through hydro-
gen bonds (Figure 12(A)).

Moreover, Thr26, Asn142, Ser144, Gly143, Gln189, Cys145,
Gln192, His163, Thr190, and Glu166 formed the main H-bonding
for 3b-complex; besides, His41 (�35%), and Met165 amino acids
formed the hydrophobic interactions. Ionic interactions were
formed mainly through His41 (�40%); and Glu166 and Thr26
amino acids formed mainly the water bridges hydrogen bonds.
Notably, His41 amino acid was the most contributing one in the
interactions through hydrophobic-, ionic-, and H2O bridges H-
bonds (Figure 12(B)).

Furthermore, the histogram of 3c-complex showed that
Asn142, Gly143, and Gln189 amino acids formed >35% of the
hydrogen bonds; whereas His41 (>90%), Met49 (⁓ 40%), and

Table 1. Binding interaction scores, RMSD, amino acids, and bond types of the synthesised compounds (3a–g) inside the SARS-CoV-
2 Mpro pocket of the co-crystallized WR1 inhibitor.

Compound Scorea RMSD Interactions Bond type Distance Å

3a �5.43 1.45 PHE140
GLU166
GLY143
CYS145
ASN142

H Donor
H Acceptor
H Acceptor
H Acceptor
pi-H

3.18
3.12
2.93
3.05
3.80

3b �6.94 1.41 GLY143
GLY143
SER144
CYS145
GLU166

H Acceptor
H Acceptor
H Acceptor
H Acceptor
pi-H

3.18
3.08
3.03
3.03
3.63

3c �6.07 1.17 PHE140
CYS145
HIS163
GLU166

H Donor
H Acceptor
H Acceptor
pi-H

3.00
3.39
3.14
3.98

3d �7.01 3.01 CYS145
GLU166
GLY143
CYS145
GLN192
HIS41
MET165

H Donor
H Donor
H Acceptor
H Acceptor
H Acceptor
H-pi
pi-H

3.99
2.97
3.16
3.28
2.87
3.81
4.10

3e �6.44 2.09 GLU166
GLY143
CYS145

H Donor
H Acceptor
H Acceptor

3.34
2.94
2.88

3f �6.59 2.83 PHE140
CYS145
PHE140
GLU166
MET49

H Donor
H Donor
H Donor
H Acceptor
pi-H

3.25
3.65
3.21
3.38
4.06

3g �6.80 1.71 GLU166
GLY143
SER144
CYS145

H Donor
H Acceptor
H Acceptor
H Acceptor

3.51
3.22
3.28
3.10

WR1 �6.52 1.53 GLU166 H Acceptor 2.98
aS: The compound score inside the binding pocket (kcal/mol).
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Leu27 contributed to the hydrophobic interactions mainly. Ionic
interactions were only observed through a small contribution of
Asp187 amino acid. Moreover, the H2O bridges H-bonds were

formed through Thr26, His164, and Gln189 mainly. His41 amino
acid was the principal amino acid that contributed to the binding
fraction as well (Figure 12(C)).

Figure 9. 3D pictures of the synthesised compounds representing the binding interactions and positioning at the SARS-CoV Mpro pocket, with the co-crystallized
redocked ligand (WR1). H-bonds were described by red dashed lines while H-pi bonds by black ones.
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Finally, the WR1-complex histogram -as a reference standard-
represented that the principal amino acids for H-bonds were
Gln189 (⁓55%), Gly143, and Glu166 (>35%); and the main mem-
bers for hydrophobic interactions were His41 (�30%), Met49, and
Met165 amino acids. Also, the ionic interactions were only observed
through small contributions of Phe140 and Glu166 amino acids;
and Glu166 (>40%) and Gln189 amino acids formed mainly the
water bridges hydrogen bonds. It was clear that both Glu166 and
Gln189 were the most types that contributed to the binding frac-
tion through H- and H2O bridges H- bonds (Figure 12(D)).

The heat maps refer to the total number of contacts of 3a, 3b,
3c, and WR1 within the SARS-CoV active pocket concerning the
simulation time are depicted in Figure 13.

It was obvious that the principal interactions for 3a within
the SARS-CoV active site were through Glu166 (>90%), Gly143
(>50%), and Ser144 (>50%) amino acids all over the simulation
time (Figure 13(A)). However, the binding residues for 3b within

the SARS-CoV active site were His41 (>95%) and Glu166
(>50%) amino acids throughout the 100 ns of simulation (Figure
13(B)). At the same time, His41 (>95%) and Gln189 (>70%)
were the main amino acid residues for the interactions with 3c
within SARS-CoV binding pocket throughout the simulation time
(Figure 13(C)). Furthermore, the main binding residues to WR1
were observed to be Glu166 (>90%) and Gln189 (>80%) at the
time of simulation (Figure 13(D)). This concludes the great
importance of Glu166, Gln189, and His41 amino acids for the
interactions with the expected inhibitors within the binding
pocket of SARS-CoV.

Moreover, the previously reported Glu166 residue to be critical
in the ligand-binding inside the active pocket of SARS-CoV Mpro17

was used for distance measurements (Supplementary Data,
Supplementary Figure 3). Besides, the histograms and heat maps
for compounds 3d, 3e, and 3f were provided in the
Supplementary Data (Supplementary Figure 4).
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Figure 10. The RMSD of the Ca atoms of the complexes (3a–g and WR1) for the SARS-CoV protein against the time of simulation (100 ns).
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Figure 11. The RMSD of ligands (3a–g and WR1) for the SARS-CoV protein, respectively, against the time of simulation (100 ns).
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2.3.2.3. Analysis of ligand properties. Ligand properties include the
RMSD, Intramolecular H-bonds (intraHB), Radius of Gyration (rGyr),
Molecular Surface Area (MolSA), Polar Surface Area (PSA), and
Solvent Accessible Surface Area (SASA), as depicted in Figure 14.

The RMSD and rGyr for 3a-complex were observed to be within
the range of (0.6–1.2) and (3.8–4) Å with equilibrium values around
0.9 and 3.92 Å, respectively. Also, no intraHB was observed during
the 100ns of simulation and the MolSA range was within
(236–243.5 Å2) and showed small fluctuations during the 100ns of
simulation reaching an equilibrium at about 240 Å2. Moreover, the
SASA was within the (50–200 Å2) range and showed fluctuations
after 90ns with an equilibrium around 140 Å2. Moreover, its PSA was
between 156 and168 Å2 with the equilibrium at 161 Å2

(Figure 14(A)).
Furthermore, for the 3b-complex, the RMSD was (0.8–2.4 Å)

and achieved an equilibrium of around 1.6 Å. The rGyr was in
between (4–5.5 Å) with an equilibrium around 4.8 Å. The intraHB
appeared as a small band at about 65 ns only. Both MolSA and
SASA were within the (288–312) and (100–300) Å2 range and
showed equilibrium around 304 and 180 Å2, respectively. The
SASA showed fluctuations at 45 ns and persisted up to the end
and the PSA was within the (195–225 Å2) range with a small fluc-
tuation at 50 ns (Figure 14(B)).

Furthermore, for 3c-complex, the RMSD and rGyr were within
the range of (0.6–1.6) and (3.4–4.4) Å with observed equilibrium
values around 0.6 and 3.8 Å, respectively. Notably, the intraHB was
observed through the 100 ns of simulation and increased in the
second half as well. The MolSA fluctuated between (280 and

315 Å2) with an equilibrium at 305 Å2, while the SASA was within
(60–240 Å2) where its fluctuations decreased after the beginning
of the simulation with an equilibrium around 110 Å2. On the other
hand, the PSA fluctuations were within the (190–212 Å2) range
with the equilibrium at 204 Å2 (Figure 14(C)).

Finally, the co-crystallized inhibitor (WR1-complex) showed an
RMSD within the (0.5–3.5 Å) range with large fluctuations all over the
100ns of simulation and the equilibrium was at 2 Å. Also, the rGyr was
within the range of (4–4.8 Å) with more fluctuations from 40ns to the
end of the 100ns of simulation and the equilibrium was observed
around 4.5 Å. Moreover, the intraHB appeared from the beginning
until the end of the 100ns. The MolSA fluctuations were within the
(360–405 Å2) range and got their equilibrium at 395 Å2. At the same
time, the SASA appeared as large fluctuations (80–320 Å2) along the
simulation time with an equilibrium at 160 Å2. Furthermore, its PSA
fluctuations were within the (100–180 Å2) range and achieved equilib-
rium at 150 Å2 (Figure 14(D)).

Based on the above, we can conclude that both compounds
3b and 3c were greatly similar to the WR1 inhibitor in the intraHB
presence indicating corresponding similar binding behaviours.
Also, the properties of their ligand were superior to those of WR1
which recommend a preferable binding affinity and consequently
a promising intrinsic activity as expected.

2.3.3. MM-GBSA calculations
The Coulomb, Hydrogen-bonding, Covalent-binding, Generalised
Born electrostatic solvation, Lipophilic, and Van der Waals energies

Figure 12. Histogram for the interactions between the tested ligand towards the SARS-CoV protein during the 100 ns of the simulation for (A) 3a, (B) 3b, (C) 3c, and
(D) WR1.
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were calculated using the mean MM-GBSA binding energy sup-
ported by Schrodinger30,53. All the got results are depicted in
Table 2.

As it can be seen from Table 2, the WR1 has the highest MM-
GBSA binding energy of �60.82 kcal/mol. Compounds 3d and 3e
showed similar binding energy of �51.13 and �51.86 Kcal/mol,
respectively. 3e also showed a similar H-bond energy and lipo-
philic energy to WR1. Other compounds have binding energies
from �42 to �48 kcal/mol which is outstanding for these com-
pounds’ mechanism of action to be presented as potent SARS-
CoV Mpro inhibitors. Notably, compound 3b showed significant
binding energy (�44.50 kcal/mol) relative to the co-crystallized
WR1 inhibitor (�60.82 kcal/mol). On the other hand, it showed
superior covalent binding energy (2.72) compared to the reference
docked inhibitor with (1.95).

2.3.4. Prediction of pharmacokinetic and physicochemical
properties
The pharmacokinetic and physicochemical properties of the syn-
thesised derivatives 3a–g were described using SwissADME (the
online web tool) as depicted in Table 3. Concerning their physico-
chemical properties, all of the synthesised compounds are from
moderately soluble to soluble in water and thus much fewer con-
cerns may be encountered in drug formulations. It was suggested
that for any drug to be absorbed, it should be available at the
absorption site in solution form54.

Besides, concerning the ADME results, except for compounds
3a and WR1, the other synthesised compounds attain unfortu-
nately low GIT absorption due to their poor lipophilicity. So oral
route may not be suitable for these compounds if administered in
their current form. All of the synthesised compounds do not cross

Figure 13. Heat map for SARS-CoV protein-ligand contacts all over the 100 ns of simulation for (A) 3a, (B) 3b, (C) 3c, and (D) WR1.
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the blood-brain barrier (BBB), hence these compounds may not
encounter CNS side effects55. Fortunately, all of the synthesised
compounds are not substrates for P-glycoprotein (Pgp-), so they
may be not susceptible to this efflux mechanism. Besides, com-
pounds 3a–c exhibit less inhibiting power towards the most com-
mon hepatic metabolising enzymes (CYP 1A2, CYP3A4, CYP2C9,
CYP2C19, and CYP2D6) among other synthesised compounds.
Moreover, Lipinski’s rule56 is not violated by all synthesised com-
pounds, so assuring their advantage as drug members. Notably,

compound 3a may be utilised as a lead compound for future
optimizations.

Moreover, the toxicity of the synthesised candidates could be
predicted using the pkCSM descriptors algorithm protocol. Except
for compounds 3a,f, all other candidates do not experience Ames
toxicity, and so they could not be considered mutagenic agents57.
Besides, all the synthesised candidates do not exhibit a cardiotoxic
effect since they are non-inhibitors of hERG I58. Additionally, except
for compound 3f, all of the synthesised derivatives could be

Figure 14. Ligand properties during the 100 ns of simulation for (A) 3a, (B) 3b, (C) 3c, and (D) WR1.

Table 2. MM-GBSA energies (kcal/mol) for complexes (3a–g and WR1) of SARS-CoV.

Complex DG Binding Coulomb Covalent H-bond Lipo Bind Packing Solv_GB VdW St. Dev.

3a �42.31 �5.15 1.99 �1.87 �10.13 �1.96 5.67 �30.86 5.04
3b �44.50 �12.90 2.72 �1.43 �8.36 �0.97 14.68 �38.23 5.95
3c �45.65 �11.84 2.59 �1.00 �8.34 �0.94 13.45 �39.55 6.44
3d �51.13 �9.99 �0.06 �1.37 �10.31 �2.46 11.04 �37.96 3.15
3e �51.86 �9.17 3.09 �2.13 �12.63 �2.07 13.10 �42.04 5.50
3f �48.41 �3.20 1.44 �1.09 �10.63 �1.32 14.91 �48.51 4.58
3g �44.67 �14.43 2.64 �1.27 �9.57 �1.78 16.21 �36.45 6.66
WR1 �60.82 �27.28 1.95 �2.05 �14.64 �2.40 28.83 �45.23 7.07

Lipo: lipophilic energy; Solv_GB: generalised born electrostatic solvation energy; VdW: Van der Waals energy; St. Dev.: standard deviation.
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Table 3. Physicochemical and ADMET studies of the novel candidates 3a–g and WR1.

Investigated compounds

Comp 3a Comp 3b Comp 3c Comp 3d Comp 3e Comp 3f Comp 3g Comp WR1

Molecular properties Molar Refractivity 70.12 83.83 88.63 98.25 113.12 100.14 124.98 108.00
TPSA (Az) 116.05 154.38 154.38 154.38 154.38 145.59 170.17 104.73
Log P o/w (WLOGP) 2.42 1.57 1.96 2.60 3.18 2.07 3.67 1.83
Consensus Log P o/w 1.84 1.13 1.26 1.87 2.49 1.60 2.65 2.08
Water solubility Soluble Soluble Soluble Soluble Moderate Soluble Moderate Soluble

Pharmacokinetics
parameters

GI absorption High Low Low Low Low Low Low High
BBB permeant No No No No No No No No
P-gp substrate No No No No No No No Yes
CYP1A2 inhibitor Yes No No Yes No No No No
CYP2C19 inhibitor Yes Yes Yes Yes Yes Yes Yes No
CYP2C9 inhibitor No No No Yes Yes Yes Yes No
CYP2D6 inhibitor No No No No No No No Yes
CYP3A4 inhibitor No No No Yes Yes Yes Yes No

Drug/lead likeness Drug likeness (Lipiniski) Yes Yes Yes Yes Yes Yes Yes Yes
Lead likeness Yes No No No No No No No

Toxicity parameters Ames toxicity Yes No No No No Yes No No
Max. tolerated dose (log mg/kg/day) 0.438 0.478 0.402 0.333 �0.427 �0.008 �0.066 0.186
hERG I inhibitor No No No No No No No No
hERG II inhibitor No No No No No No Yes Yes
Oral rat acute toxicity (LD50) (mol/kg) 2.826 2.836 2.833 2.957 3.726 2.897 3.589 2.01
Oral rat chronic toxicity (LOAEL)

(log mg/kg_bw/day)
1.506 1.26 1.392 1.67 1.56 1.032 1.681 0.79

Hepatotoxicity No Yes Yes Yes Yes Yes Yes Yes
Minnow toxicity (log mM) 0.901 2.616 2.754 2.035 1.841 2.696 2.25 4.222

Figure 15. SAR studies of the newly designed targets (3a–g) as SARS-CoV-2 Mpro inhibitors. The red rectangle refers to the H-bond acceptor moiety and the green
circle refers to the moiety that fits into the hydrophobic groove.
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regarded as non-inhibitors of hERG II, hence the cardiac arrhythmia
threat may be avoided59. Also, compound 3a is non-hepatotoxic.
Finally, compounds 3b,c,f show feasible tolerability due to their
oral rat chronic toxicity (in silico) relative to lower values.

2.4. Structure–activity relationship (SAR) study

According to in vitro results, acylation of amino thiazole
with amino acid enhanced antiviral activity. Notably, the activity
was inversely proportional to the size of the substituent
at the a-position (Figure 15)60. So, a bulky substituent at
a-position diminished the activity of synthesised compounds
against SARS-CoV. However, direct acylation of the
aminothiazole with an aromatic ring didn’t improve the anti-
viral activity.

Therefore, based on both the in vitro (Figures 5 and 6) and the
in silico (Figures 9 and 11, and Table 1) results, we can conclude
the following interesting points describing the recommended
structure-activity relationship (SAR) of the examined candidates
(3a–g) as depicted in Figure 15:

a. Compound 3b with no hydrophobic side chain (either ali-
phatic or aromatic) showed the best anti-SARS-CoV-2
(174.7 mg/mL) and almost the SARS-CoV-2 Mpro inhibition
(5.12 mg/mL) activities as well. Its docking score (�6.94 kcal/
mol) was very promising compared to other candidates and
its binding mode was nearly similar to that of the native co-
crystallized WR1. This may be attributed to its good penetra-
tion throughout the cells of SARS-CoV-2.

b. Compound 3d designed with the isopropyl hydrophobic side
chain showed a superior docking score (�7.01 kcal/mol) com-
pared to that of WR1 (�6.52 kcal/mol). Also, its DG binding
energy calculated from the MM-GBSA (�51.13 kcal/mol) was
promising compared to that of WR1 (�60.82 kcal/mol). The
MD simulations of compound 3d showed that it moved
deeper inside the active site of SARS-CoV than its initial pos-
ition by around 3 Å indicating a stable behaviour as well.
However, its SARS-CoV-2 inhibitory activity was higher than
its corresponding CC50 value with a weak SARS-CoV-2 Mpro
inhibition (88.84 mg/mL) performed through a cell-based
induced assay. This may be explained by expecting the very
poor penetration of compound 3d throughout the viral cells
which inversely affected its antiviral activity. Therefore, a suit-
able formulation for compound 3d is required soon to con-
firm the recommended hypothesis.

c. Compound 3a with the smallest size showed a weak activity
against SARS-CoV-2 (1377 mg/mL) but a highly promising
SARS-CoV-2 Mpro inhibition (4.67 mg/mL). This indicates that
the Mpro inhibitory activity is inversely proportional to the
size of the substituent at the a-position.

d. Compound 3c having a simple methyl hydrophobic side
chain showed superior SARS-CoV-2 inhibitory activity
(698 mg/mL) with a promising Mpro inhibition (11.90 mg/mL).
It showed very significant values of the binding score and DG
binding energy (�6.07 and �45.65 kcal/mol, respectively)
with almost the same binding mode as the native co-crystal-
lized WR1 inhibitor.

e. Compound 3g with the largest hydrophobic indole side chain
was not stable during the MD simulations. It started to fluctu-
ate from the beginning of the simulation and moved away
from its original position till it lost its interaction and was
pushed out of the active site. At the same time, its SARS-
CoV-2 inhibitory activity was higher than its corresponding

CC50 value and showed a very weak inhibition towards the
SARS-CoV-2 Mpro (51.37 mg/mL). This confirms again that the
Mpro inhibition is inversely related to the size of the substitu-
ent at the a-position.

f. Both compounds 3e and 3f with benzyl and pyrrolidine side
chains were observed to be weak members against SARS-
CoV-2 with IC50 values of 1285 and 1252 mg/mL, respectively.
However, their SARS-CoV-2 Mpro inhibitory activities were
moderate with IC50 values of 16.57 and 22.37 mg/mL, respect-
ively. This may explain their good docking scores, binding
modes, DG binding energies, and MD results towards SARS-
CoV Mpro as a target receptor.

g. All the designed derivatives bound both Glu166 and Cys145
amino acids which are crucial for the inhibition of the SARS-
CoV Mpro active site.

Furthermore, a multiple linear regression model was estab-
lished to assess the correlation between the two independent var-
iables (anticipated Log P and docking score) and the dependent
variable (IC50 values) as shown in Table 4. It was revealed that R2

was 0.49. Thus, in other words, we can conclude that nearly 49%
of the IC50 values’ variability could be elucidated by the independ-
ent Log P and docking scores entire set.

3. Conclusion

Owing to COVID-19 global expansion and overwhelming spread
with the rising death toll, scientists and researchers are committed
to developing new effective drugs as fast as possible. So, in this
presented work, a novel wave of N-(5-nitrothiazol-2-yl)-carboxa-
mido derivatives (3a–g) was designed and chemically synthesised
based on the fundamental pharmacophoric features of the co-
crystallized inhibitor WR1 of SARS-CoV. Compound 3b was the
superior anti-SARS-CoV-2 candidate with an IC50 of 174.7 mg/mL.
Moreover, the drug candidates 3a, 3b, and 3c experienced poten-
tial SARS-CoV-2 Mpro inhibition with IC50 of 4.67, 5.12, and
11.90 mg/mL, respectively. Hence, the attained results extremely
assured our designed rationale and comply with the attained
computational insights using molecular docking and dynamics
simulations which declared the strong anticipated activities for
these drug candidates. The promising compounds 3a, 3b, and 3c
displayed binding interactions of �5.43, �6.94, and �6.07 kcal/
mol, respectively. Furthermore, the presented work shed light on
the SAR of the synthesised derivatives 3a–g pointing out a struc-
tural modification that could enhance activity against COVID-19
for future design. Obviously, the activity was inversely propor-
tional to the size of the substituent at the a-position. So, a bulky
substituent at a-position diminished the activity of synthesised
compounds against SARS-CoV. Therefore, based on the above,
compound 3b with no hydrophobic side chain (either aliphatic or
aromatic) showed the best anti-SARS-CoV-2 (174.7 mg/mL) and
almost the SARS-CoV-2 Mpro inhibition (5.12 mg/mL) activities as

Table 4. The IC50 values (mg/mL), logP, and docking scores of the examined
candidates for the construction of the multiple linear regression model.

Comp. IC50 S score Log P

3a 4.66 �5.43 2.42
3b 5.11 �6.94 1.57
3c 11.90 �6.07 1.96
3d 88.84 �7.01 2.60
3e 16.57 �6.44 3.18
3f 22.37 �6.59 2.07
3g 51.37 �6.80 3.67
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well. Its docking score (�6.94 kcal/mol) was very promising com-
pared to other candidates and its binding mode was nearly similar
to that of the native co-crystallized WR1. This may be attributed
to its good penetration throughout the cells of SARS-CoV-2.
Finally, most investigated compounds, particularly compound 3b,
showed feasible tolerability in ADMET studies.

4. Materials and methods

4.1. Chemistry

4.1.1. General
All materials were purchased from commercial suppliers and used
with no extra purification. The final compounds’ purities were elu-
cidated by tandem mass spectrometry (LC/MS) using a gradient
elution system (acetonitrile/water 5/95/95/5, 5min, 0.05% formic
acid) on Ascentis Express Peptide C18 column, and UV detection
(254 nm). The final compounds’ purities were 95% or greater. A
Bruker NMR 400MHz Avance III spectrometer operating at 100MHz
for 13C NMR and 400MHz for 1H NMR was utilised for NMR spectra
recording. Chemical shifts are given relative to tetramethylsilane
(TMS) in part per million (ppm), and coupling constants J are given
in Hertz. HPLC-HRMS analyses were carried out using Agilent (Santa
Clara, CA) 1200 series binary pump (G1312B), and columns waters
XTerra MS C18 (3.5 um; 2.1� 150mm) þ Phenomenex C18 security
guard column (2� 4mm) on gradient elution mobile phase using
0.2% acetic acid in H2O/methanol; wavelength ¼ 254nm. Elemental
analyses were established at Microanalytical Centre, Faculty of
Science, Cairo University, Egypt using Manual Elemental Analyser
Heraeus (Germany) and Automatic Elemental Analyser CHN Model
2400 Perkin Elmer (USA).

4.1.2. General procedure for the synthesis of compounds 3a–3g
N-Acyl benzotriazoles (1 equiv, 0.2mmol) were added to a stirred
solution of 5-nitrothiazol-2-amine (1.1 equiv, 0.22mmol) and trie-
thylamine (1.1 equiv, 0.22mmol) in acetonitrile (4ml). The reaction
mixture was stirred for 1 h. The solvent was evaporated, and the
residue was acidified with HCl (2 N). The precipitated solid was fil-
tered, washed with HCl (2 N), water, and dried to obtain the
desired products. All the NMR analysis data of the target com-
pounds (3a–g) was added to the Supplementary Data (SI1).

4.1.2.1. 4-Methyl-N-(5-nitrothiazol-2-yl)benzamide (3a).

Yellow microcrystals (96%). 1H NMR (500MHz, DMSO-d6) d 3.47
(s, 1H), 8.69 (s, 1H), 8.05–8.03 (m, 2H), 7.38 (d, J¼ 8.0 Hz, 2H), 2.40
(s, 3H); 13C NMR (125MHz, DMSO-d6) d 166.7, 163.2, 144.5, 143.1,
142.5, 129.8, 129.1, 128.4, 21.6. LC/MS m/z: 264 [MþHþ]. Anal.
Calcd. for C11H9N3O3S: C, 50.18; H, 3.45; N, 15.96. Found: C, 50.22;
H, 3.37; N, 15.93.

4.1.2.2. Benzyl (2-((5-nitrothiazol-2-yl)amino)-2-oxoethyl)carba-
mate (3b).

Yellow microcrystals (92%). 1H NMR (500MHz, DMSO-d6) d
13.19 (s, 1H), 8.61 (s, 1H), 7.76 (t, J¼ 5.1 Hz, 1H), 7.35–7.29 (m, 5H),
5.04 (s, 3H), 4.01 (d, J¼ 4.4 Hz, 2H); 13C NMR (125MHz, DMSO-d6)
d 170.7, 162.0, 157.0, 143.2, 137.4, 137.3, 128.8, 128.3, 128.3, 66.2,
44.0. LC/MS m/z: 337 [MþHþ]. Anal. Calcd. for C13H12N4O5S: C,
46.43; H, 3.60; N, 16.66. Found: C, 46.48; H, 3.55; N, 16.71.

4.1.2.3. Benzyl (S)-(1-((5-nitrothiazol-2-yl)amino)-1-oxopropan-2-
yl)carbamate (3c).

Yellow microcrystals (94%). 1H NMR (500MHz, DMSO-d6) d
13.25 (s, 1H), 8.63 (s, 1H), 7.90 (d, J¼ 6.2 Hz, 1H), 7.41–7.11 (m,
5H), 5.01 (s, 2H), 4.33 (s, 1H), 1.30 (d, J¼ 6.6 Hz, 3H); 13C NMR
(125MHz, DMSO-d6) d 174.1, 162.1, 156.3, 143.1, 142.5, 137.2,
128.8, 128.3, 128.3, 66.1, 50.6, 17.6. LC/MS m/z: 351 [MþHþ]. Anal.
Calcd. for C14H14N4O5S: C, 48.00; H, 4.03; N, 15.99. Found: C, 48.11;
H, 4.09; N, 15.88.

4.1.2.4. Benzyl (S)-(3-methyl-1-((5-nitrothiazol-2-yl)amino)-1-oxobu-
tan-2-yl)carbamate (3d).

Yellow microcrystals (91%). 1H NMR (500MHz, DMSO-d6) d
13.27 (s, 1H), 8.60 (s, 1H), 7.81 (d, J¼ 7.6 Hz, 1H), 7.42–7.13 (m,
5H), 5.00 (s, 2H), 4.15 (t, J¼ 7.3 Hz, 1H), 2.05–1.99 (m, J¼ 13.5,
6.5 Hz, 1H), 0.86 (t, J¼ 6.4 Hz, 6H); 13C NMR (125MHz, DMSO-d6) d
173.2, 161.6, 156.8, 143.1, 142.5, 137.2, 128.8, 128.3, 128.3, 66.2,
60.7, 30.3, 19.4, 18.7. LC/MS m/z: 379 [MþHþ]. Anal. Calcd. for
C16H18N4O5S: C, 50.79; H, 4.79; N, 14.81. Found: C, 50.87; H, 4.73;
N, 14.89.

4.1.2.5. Benzyl (S)-(1-((5-nitrothiazol-2-yl)amino)-1-oxo-3-phenyl-
propan-2-yl)carbamate (3e).

Brownish yellow microcrystals (95%). 1H NMR (500MHz, DMSO-
d6) d 13.27 13.43 (s, 1H), 8.62 (s, 1H), 7.97 (d, J¼ 7.8 Hz, 1H),
7.39–7.12 (m, 10H), 4.93 (s, 2H), 4.57–4.50 (m, 1H), 3.05 (dd,
J¼ 13.6, 3.9 Hz, 1H), 2.87–2.76 (m, 1H); 13C NMR (125MHz, DMSO-
d6) d 173.1, 161.9, 156.5, 143.1, 142.5, 137.5, 137.1, 129.7, 128.8,
128.6, 128.3, 128.1, 127.1, 66.0, 56.8, 37.0. LC/MS m/z: 427
[MþHþ]. Anal. Calcd. for C20H18N4O5S: C, 56.33; H, 4.25; N, 13.14.
Found: C, 56.41; H, 4.29; N, 13.21.
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4.1.2.6. Benzyl (S)-2-((5-nitrothiazol-2-yl)carbamoyl)pyrrolidine-1-
carboxylate (3f).

Yellow microcrystals (93%). 1H NMR (500MHz, DMSO-d6) d
13.29 (s, 1H), 8.59 (s, 1H), 7.57–6.91 (m, 5H), 5.13–4.81 (m, 2H),
4.56–4.41 (m, 1H), 3.57–3.35 (m, 2H), 2.31–2.14 (m, 1H), 1.99–1.70
(m, 3H); 13C NMR (125MHz, DMSO-d6) d 173.4, 173.1, 161.9, 154.5,
153.7, 143.1, 143.0, 142.5, 137.2, 136.8, 128.8, 128.5, 128.3, 128.1,
128.0, 127.7, 66.7, 60.1, 59.6, 47.5, 47.0, 31.3, 30.3, 24.5, 23.7. LC/
MS m/z: 377 [MþHþ]. Anal. Calcd. for C16H16N4O5S: C, 51.06; H,
4.28; N, 14.89. Found: C, 51.13; H, 4.22; N, 14.75.

4.1.2.7. Benzyl (S)-(3-(1H-indol-3-yl)-1-((5-nitrothiazol-2-yl)amino)-
1-oxopropan-2-yl)carbamate (3g).

Brown microcrystals (90%). 1H NMR (500MHz, DMSO-d6) d
13.46 (s, 1H), 10.84 (s, 1H), 8.60 (s, 1H), 7.87 (d, J¼ 7.2 Hz, 1H), 7.68
(d, J¼ 7.8 Hz, 1H), 7.44–7.07 (m, 7H), 7.02 (t, J¼ 7.3 Hz, 1H), 6.93 (t,
J¼ 7.3 Hz, 1H), 4.93 (s, 2H), 4.51–4.56 (m, 1H), 3.17 (dd, J¼ 14.4,
5.0 Hz, 1H), 3.00 (dd, J¼ 13.7, 9.8 Hz, 1H); 13C NMR (125MHz,
DMSO-d6) d 173.6, 162.0, 156.4, 143.1, 142.4, 137.1, 136.5, 128.8,
128.3, 128.2, 127.4, 124.8, 121.4, 119.0, 118.7, 111.8, 109.3, 66.1,
56.0, 27.7. LC/MS m/z: 466 [MþHþ]. Anal. Calcd. for C22H16N5O5S:
C, 56.77; H, 4.11; N, 15.05. Found: C, 56.84; H, 4.16; N, 15.02.

4.2. In vitro studies

4.2.1. MTT assay
It was performed to calculate the newly synthesised candidates’
minimum concentrations that cause 50% toxicity to the cells
(CC50). First, the newly synthesised derivatives were dissolved in
ddH2O with 10% DMSO and then diluted with Dulbecco’s
Modified Eagle’s Medium (DMEM) to the desired concentrations.
The MTT assay method was performed with minor changes using
VERO-E6 cells (ready for the virus propagation) to be applied in
other experiments. The complete methodology was elucidated in
the Supplementary Data (SI2).

4.2.2. Inhibitory concentration 50 (IC50)
The IC50 for each examined compound (3a–g) which is equivalent
to the minimum concentration to inhibit the virus infectivity by
50% compared to the virus control was calculated61. The full
methodology was depicted in the Supplementary Data (SI3).

4.2.3. SARS-CoV-2 Mpro assay (cell-based)
The Mpro activity was investigated using the 3CL Protease Assay
Kit. The applied protocol and methodology were depicted in the
Supplementary Data (SI4). Herein, the present assay was estab-
lished to assess the newly synthesised candidates (3a–g) inhibitory
effects on the SARS-CoV-2 Mpro enzyme as a recommended
mechanism of action.

4.3. In silico studies

4.3.1. Docking studies
The activity of synthesised derivatives (3a–g) against SARS-CoV
Mpro, was investigated via molecular docking employing the MOE
2019 suite62–65. It was utilised to reveal the interactions of the
aforementioned synthesised candidates towards SARS-CoV Mpro.
Thereby, molecular docking was carried out to rationalise the
mechanism of action for the synthesised derivatives as SARS-CoV
Mpro inhibitors66.

4.3.1.1. Preparation of the synthesized candidates 3a–g. The syn-
thesised candidates were chemically drawn by PerkinElmer
ChemOffice Suite 2019 version 19.0.0.22 and then prepared for
docking as described in the default procedure67–72. The synthes-
ised derivatives (3a–g) and the co-crystallized WR1 inhibitor were
inserted into the same database (MDB file) and saved to be ready
for SARS-CoV Mpro docking.

4.3.1.2. Preparation of SARS-CoV Mpro receptor. The X-ray struc-
ture of SARS-CoV Mpro was obtained from the protein data bank
online web (PDB entry: 2OP9)41. The target receptor was proto-
nated, corrected for errors, and minimised energetically to be pre-
pared for docking as discussed in detail73–78.

4.3.1.3. Docking of the synthesized candidates to SARS-CoV Mpro
target. The docking step was carried out and the docking protocol
(general) was utilised to comply with the previously described
methodologies79–84 to investigate poses with the most acceptable
RMSD, scores, and interactions85–88.

4.3.2. Molecular dynamics (MD) simulations
The desmond package of Schr€odinger LLC89 was used to apply
the MD simulations90,91. Moreover, the Schrodinger thermal_-
mmgbsa.py python script was used to measure the MM-GBSA
energies for all examined complexes29,92,93. The full MD method-
ology was described in the Supplementary Data (SI5).

4.3.3. MM-GBSA calculations
The Schrodinger thermal_mmgbsa.py python script was used to
perform the average MM-GBSA binding energies30,53. Also, the
Coulomb, Covalent-binding, Hydrogen-bonding, Generalised Born
electrostatic solvation, Lipophilic, and Van der Waals energies
were calculated. The methodology was depicted in the
Supplementary Data (SI6).

4.3.4. Prediction of pharmacokinetic and physicochemi-
cal properties
The pharmacokinetic and physicochemical investigation is an out-
standing step in identifying novel candidates from a hit to a
drug94–96. So, the Swiss Institute of Bioinformatics (SIB) supplies
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the free Swiss ADME evaluating the physicochemical, pharmacoki-
netic, and ADME parameters of the synthesised candidates could
be predicted as well. Chemical structures of the synthesised deriv-
atives (3a–g) and the co-crystallized ligand WR1 were transformed
to SMILES, then submitted for further calculations97,98. Moreover,
the toxicity features of the synthesised candidates were evaluated
employing the pkCSM protocol99,100.

5. Statistical analysis

The results were represented as mean± SD. One-way analysis of
variance (ANOVA) followed by a Tukey–Kramer multiple compari-
son test. Then, the Kruskal-Wallis test followed by a Dunn’s mul-
tiple comparison test was used for statistical comparison of
parametric and nonparametric data, respectively.
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